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Abstract

The Sistan Suture Zone (SSZ) in eastern Iran is a significant tectonic boundary separating the Helmand 
Block from the Central-East Iranian Microcontinent (CEIM). This study provides a comprehensive 
review of its tectonic framework by integrating structural, geodynamic, and seismic data. The aim is to 
clarify stress distribution, fault dynamics, and deformation patterns in the region. The SSZ is primarily 
characterized by N-S trending right-lateral strike-slip faults, which exhibit no rotational deformation and 
facilitate differential motion between adjacent tectonic blocks. In contrast, the Dorouneh Fault System 
shows left-lateral motion with clockwise rotation, reflecting the region’s tectonic complexity. The 
Qasr-e Qand Fault is identified as a crucial boundary marking the transition to the Makran Subduction 
Zone, where compressional forces dominate, and a steep lithospheric dip is observed. Additionally, the 
Lut Block experiences counterclockwise rotation and heightened fault activity under regional stress. 
Quantitative analyses reveal variations in fault slip rates, with active faults effectively accommodating 
strain across the zone. This synthesis underscores the SSZ’s critical role in regional tectonic processes, 
linking surface deformation to deeper subduction mechanisms. The findings enhance our understanding 
of the SSZ’s evolution, its implications for seismic hazard assessment, and its broader geodynamic 
connections to the Makran Subduction Zone and adjacent tectonic systems.
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1. Introduction
The closure of the Neo-Tethys Ocean 
created several major orogenic belts, many 
of which experienced lateral movement 
of the upper plate lithosphere. Notable 
examples include the westward motion of 
Anatolia away from the Arabia-Eurasia 
collision zone (Jackson & McKenzie, 
1984), the escape of the eastern Alps and 
northern Pannonian Basin from the Adria-
Eurasia collision (Ratschbacher et al., 1991, 
1989), and the eastward shift of Indochina 
due to the India-Asia collision (Tapponnier 
et al., 1982; Richter and Fuller, 1996; Li 
et al., 2017). These lateral movements 
accommodate crustal shortening and are 
guided by major strike-slip faults, which also 
pose significant seismic risks when active. 
Another region that may have experienced 
similar lateral escape lies west of India 
and Tibet, covering much of Afghanistan 
and eastern Iran. Tapponnier et al. (1981) 
observed that the strike-slip faults around 
the Helmand Block in Afghanistan show 
evidence of westward movement. However, 
due to limited geological data, the full extent 
of this motion remains unclear. The geology 
of eastern Iran, especially the Sistan Suture 
Zone (SSZ), offers valuable information to 
better understand this lateral motion.
The SSZ is a N-S trending structure, 
roughly 800 km long, that separates the 
Helmand Block from the Lut Block in 
central Iran (Figure 1). This orientation 
is unusual because most Neo-Tethyan 
subduction zones during the Mesozoic and 
Cenozoic were E-W trending. Structural and 
metamorphic evidence suggests different 
possibilities for the subduction polarity 

in the SSZ, with researchers proposing 
either westward or eastward subduction 
(Agard et al., 2009; Angiboust et al., 2013; 
Arjmandzadeh et al., 2011; Bröcker et al., 
2013; Pang et al., 2011; Saccani et al., 2010; 
Tirrul et al., 1983; Bagheri and Damani 
Gol, 2020). Estimates for the timing of 
closure range from the Late Cretaceous to 
the Late Eocene or Oligocene (Bröcker et 
al., 2013; Tirrul et al., 1983; Zarrinkoub et 
al., 2012). Some studies even suggest that 
subduction began in the Jurassic, based 
on magmatic and metamorphic evidence 
from the eastern Lut Block (Beydokhti et 
al., 2015; Esmaeily et al., 2005; Karimpour 
et al., 2011; Nabiei & Bagheri, 2013; 
Pang et al., 2013; Stöcklin et al., 1972). 
If E-W convergence caused the SSZ to 
close, the Lut and Helmand Blocks must 
have interacted significantly. This would 
restore the Helmand Block to an eastern 
position, potentially into the Karakoram-
Tibetan realm. However, the extent of this 
movement remains uncertain due to limited 
kinematic data. Bagheri and Gol (2020) 
proposed an alternative hypothesis that the 
SSZ was initially an E-W trending Neo-
Tethyan trench, which later bent into an 
N-S orientation through oroclinal buckling. 
If correct, this scenario would clarify the 
timing and extent of lateral motion while 
connecting the tectonic history of Iran with 
the western Tibetan Plateau. The oroclinal 
bending hypothesis suggests a tightly 
curved structure linking the eastern Lut 
Block to the western Helmand Block. This is 
consistent with paleomagnetic data showing 
counter-clockwise rotation of the Lut Block 
from the Triassic to Paleogene (Bina et al., 
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1986; Davoudzadeh et al., 1981; Soffel et 
al., 1996). Alternatively, if the SSZ was 
always N-S trending, it may extend farther 
north than currently mapped (Rossetti et al., 
2010) or end against a transform boundary 
to the north, encompassing the Helmand 
Block and Farah Basin. Both interpretations 
suggest significant westward motion for the 
Helmand Block but differ in timing. For 
instance, if the SSZ acted as a back-arc 
basin that closed during N-S subduction, 
evidence of high-pressure/low-temperature 
metamorphism (~90 Ma, Bröcker et al., 
2013) implies this motion began in the 
Late Cretaceous, well before the India-Asia 
collision.
 In contrast, the oroclinal bending model 
may connect to the collision, similar to the 
case of Indochina (Li et al., 2017). This 
study investigates the northern termination 
of the SSZ through field observations, 
focusing on the subduction zone’s location, 
the presence of curvilinear structures 
or strike-slip faults, and the timing of 
deformation. Stratigraphic and magmatic 
evidence is used to determine whether the 
northern SSZ exhibits features of a tight 
orocline. The Sistan Suture Zone (SSZ), 
located in eastern Iran, is a Cretaceous-
Tertiary orogenic belt commonly referred to 
as the Eastern Iranian Ranges. This north-
south elongated belt spans approximately 
900 km in length and 200 km in width, 
consisting primarily of Cenozoic rocks. It 
serves as a tectonic boundary, separating 
the Gondwana-derived Afghan Block to 
the east from the Lut Block in central Iran 
to the west (Stöcklin et al., 1968; Tirrul 
et al., 1983; Samimi et al., 2020; Bagheri 

and Gol, 2020). The northern end of the 
SSZ becomes splayed due to strike-slip 
fault activity, trending towards WNW 
and extending to the south of Birjand and 
Basiran. Towards the south, its N-S trends 
curve southeastward and continue in an 
east-west direction into Pakistan. The flysch 
basin in eastern Iran has been categorized 
as a transform fault basin influenced by 
the Nahbandan and Harirud fault systems, 
along with the rotational movements of 
the Lut and Helmand blocks (Samani and 
Ashtari, 1992; Bagheri and Gol, 2020).

2. Geology setting 
Geologically, the SSZ comprises three 
main units, representing distinct stages of 
an accretionary prism during the closure of 
the Sistan Ocean (Tirrul et al., 1983). The 
Ratuk Complex, located in the eastern part 
of the suture zone, is the oldest segment, 
preserving evidence of early east-directed 
subduction beneath the Afghan Block. 
This complex includes Cretaceous flysch, 
ophiolitic rocks, and a metamorphic 
mélange. The Neh Complex, situated to the 
west, records a later phase of east-directed 
subduction following the migration of the 
subduction zone westward (Rad et al., 
2009). It consists of Late Cretaceous to 
Eocene flysch interspersed with ophiolitic 
materials. The Sefidabeh Basin, which 
unconformably overlies the Ratuk and Neh 
complexes, contains unmetamorphosed 
sediments dating from the Maastrichtian 
to Eocene, interpreted as representing a 
fore-arc basin (Tirrul et al., 1983). The 
final stages of oceanic closure and suture 
formation in the SSZ were associated 
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with calc-alkaline and alkaline volcanic 
activities, alongside minor granitoid 
intrusions, occurring between the Late 
Cretaceous and the Quaternary (Camp and 
Griffis, 1982; Pang et al., 2013; Walker et 
al., 2009). The timing of the Sistan Ocean’s 
existence remains uncertain, but radiolaria 
in pelagic cherts suggest that deep-water 
marine conditions were present as early as 
the Early Cretaceous (Babazadeh and De 
Wever, 2004a, b). Although the details of 
the closure history are not well-constrained, 
it is widely accepted that the ocean was 
fully closed by the Late Paleocene to Early 
Eocene (Tirrul et al., 1983). 
Numerous studies have examined the 
geology, petrology, and geochemistry of 
the SSZ (Angiboust et al., 2013; Camp and 
Griffis, 1982; Fotoohi Rad et al., 2005; 
Saccani et al., 2010; Tirrul et al., 1983). This 
summary focuses on the key geological and 
structural features of the SSZ that are most 
relevant to the present study.

3. Active Faulting in Sistan Suture Zone
The map illustrates the widespread 
distribution of active faulting across 
the Sistan Suture Zone, emphasizing its 
significant seismic potential (Figure 2). 
Among the identified faults, Sefiedabeh, 
Zahedan, Nehband, Nayband, Abiz, and 
Gazik are particularly notable due to their 
heightened potential for generating large-
magnitude earthquakes. These faults, 
located in a tectonically dynamic region, 
play a crucial role in shaping seismic 
hazards and contribute to our understanding 
of the region’s geodynamic behavior. 
To provide context for seismic activity, 

the map incorporates the epicenters of 
180 seismic events (Ms ≥ 4) recorded 
between 1900 and 2022, compiled from 
the International Seismological Centre 
(ISC) and the United States Geological 
Survey (USGS) datasets. Active faults are 
delineated by red lines, while the epicenters 
of the 1997 Zirkuh earthquake (Ms 7.3) and 
the 2013 Saravan earthquake (Ms 7.7) are 
highlighted with red circles.

4. Active Faulting and Deformation in 
the Northern Sistan Suture Zone
Active faulting in the Birjand region of NE 
Iran by Walker and Khatib (2006) provides a 
detailed schematic representation of faulting 
patterns in northeastern Iran, as depicted 
in Figure 3. The diagram emphasizes the 
accommodation of N-S right-lateral shear 
across the region through a range of fault 
systems. In the southern segment, this 
shear is predominantly absorbed by the 
N-S right-lateral faults of the Sistan Suture 
Zone, where deformation is primarily 
nonrotational. Moving northward, the shear 
transitions to E-W left-lateral faults, which 
are characterized by clockwise rotation 
around vertical axes. The Giv and Nauzad 
thrusts, situated at the eastern termination of 
the Sistan right-lateral faults, are interpreted 
to undergo anticlockwise rotation. This 
rotational behavior facilitates the transition 
to E-W thrust faulting near Birjand, which 
is likely linked to the clockwise vertical-
axis rotation of crustal material around the 
Dasht-e Bayaz fault in the northern region. 
These interactions highlight the dynamic 
interplay between thrust and strike-slip 
faulting, underscoring the complex shift 
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between rotational and nonrotational 
deformation in the area (Walker and Khatib, 
2006; Bayasgalan et al., 1999 a and b). 
This faulting pattern illustrates the intricate 
seismotectonic environment of northeastern 
Iran, where deformation accommodates 

N-S shear while contributing to the region’s 
seismic hazard potential.

4. Variation in Fault Slip Rates and 
Strain Distribution in the Lut Block, 
Eastern Iran

 
Figure 1. Tectonic map of the Makran region, illustrating primary tectonic features, fault systems, and 

geological boundaries. The Lut Block’s boundaries are emphasized, with the western boundary (No. 1) 

and eastern boundary (No. 2) defined by major dextral strike-slip fault systems. The Chaman Fault (CF, 

No. 3) and Ornach Nal Fault (OF, No. 4) are sinistral strike-slip faults, with the movement rate of the CF 

derived from geomorphological analyses (Snead, 1990). The Minab–Zendan–Palami (MZP) fault system 

(No. 5) is depicted along with its motion rates based on Vernant et al. (2004). The map also highlights 

the Main Zagros Thrust (MZT) and key geological features such as the Jaz Murian Depression and 

Mashkel Depression. The Sistan Suture Zone is identified as a critical tectonic boundary between the 

Lut and Helmand Blocks. Quaternary volcanic centers, including Bazman (B), Taftan (T), and Sultan 

(S), are shown as yellow triangles (Afaghi & Salek, 1977; Dykstra & Birnie, 1979; White, 1984). A green 

symbol within the Lut Block indicates counterclockwise rotation, supported by GPS measurements and 

paleomagnetic interpretations (Mattei et al., 2012; Walpersdorf et al., 2014). Pink circles represent GPS 

stations recording movement velocities related to the convergence of the Arabian and Eurasian plates 

(Vernant et al., 2004), while white arrows show the relative motion of the Arabian Plate with respect to 

the Eurasian Plate, derived from the GEODVEL-2010 model (Argus et al., 2010).
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Figure 2. The structural map depicts active faults within the Sistan zone. Earthquake magnitudes are 

denoted by circles with the following color scale: green (4.5 ≤ Ms < 5), cyan (5 ≤ Ms < 5.5), blue (5.5 ≤ Ms 

< 6), light green (6 ≤ Ms < 6.5), yellow (6.5 ≤ Ms < 7), orange (7 ≤ Ms < 7.5), and red (7.5 ≤ Ms < 8), based 

on data from the ISC Catalogue (1900–2023).

Yazdanpanah et al. (2015) studied fault 
movements in the Lut Block, a region 
in eastern Iran, where the speed of fault 
slipping changes from west to east. Over 
the last five million years, right-lateral 
faults have become active in and around the 
Lut Block. During the Quaternary period, 
the Nehbandan fault system in the east was 
measured to have a slip rate of about 5 mm/
year, while the Nayband fault system in the 
west had a rate of 1.7 ± 0.3 mm/year. This 
shows that faults in the east move faster 
than those in the west. The high activity of 
these faults has created a zone where the 
amount of movement varies. Using tools 
like satellite images, field studies, magnetic 

data, and lab experiments, Yazdanpanah et 
al. (2015) examined how strain and fault 
movement are spread across the Lut Block. 
They discovered that areas with more 
movement directly relate to changes in fault 
slip rates.

5. Competing Tectonic Models for the 
Northern Termination of the Sistan 
Suture Zone
Rojhani et al. (2020) conducted an in-depth 
study of the tectonic evolution of the abrupt 
northern termination of the Sistan Suture 
Zone in eastern Iran. Their work explores 
two contrasting hypotheses to explain 
this phenomenon. The first hypothesis, 
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Figure 3. presents a schematic map of faulting in northeastern Iran, illustrating the occurrence 

of N-S right-lateral shear throughout the region. In the southern part, this shear is primarily 

accommodated by N-S right-lateral faults within the Sistan Suture Zone, while in the northern 

areas, it is absorbed by E-W left-lateral faults that exhibit clockwise rotation around vertical axes. 

The Giv and Nauzad thrusts, located at the eastern terminus of the Sistan right-lateral faults, are likely 

to undergo anticlockwise rotation (Bayasgalan et al., 1999 a and b). This rotational behavior enables 

a transition to the predominantly E-W thrust faulting near Birjand, which is thought to result from 

the clockwise vertical-axis rotation of crustal material around the Dasht-e Bayaz fault in the northern 

region (Modified from Walker and Khatib (2006)).

 
Figure 4. A symbolic model illustrating the role of cumulative north-south right-lateral shear in the 

structural bending of northern Lut. The gradual increase in applied stress from west to east significantly 

influences the structural bending of northern Lut and alters the trend of the Doruneh Fault in various 

sections. A green symbol within the Lut Block indicates counterclockwise rotation, supported by GPS 

measurements and paleomagnetic interpretations (Mattei et al., 2012; Walpersdorf et al., 2014). (modified 

from Yazdanpanah et al. (2015)).



98A comprehensive analysis of the Sistan Suture...

detailed by Rojhani et al. (2020), proposes 
an oroclinal buckling model, where the 
Sistan Suture was initially an E-W trending 
Neo-Tethyan trench. Over time, regional 
tectonic forces caused a 180° buckling, 
resulting in its present N-S orientation. 
This interpretation aligns with paleomagnetic 
data indicating counterclockwise rotation 
of the Lut Block, as highlighted in studies 
by Bina et al. (1986), Davoudzadeh et al. 
(1981), and Soffel et al. (1996). The model 
suggests that the curvature of the suture 
zone reflects regional tectonic processes, 
similar to those observed in other orogenic 
systems. In contrast, the second hypothesis 
attributes the termination of the Sistan 
Suture Zone to transform faults, which 
facilitated the westward migration of 
the Helmand Block. This mechanism, 
associated with regional extrusion tectonics, 
posits that transform faults accommodated 
the westward escape of the Helmand Block 

while simultaneously terminating the suture 
zone. This interpretation parallels the well-
documented extrusion tectonics of the 
Tibetan Plateau, as noted by Li et al. (2017).
 Figure 5 provides a comparative visual 
representation of these hypotheses. Figure 
5a illustrates the oroclinal buckling model, 
emphasizing the curved geometry of the 
suture zone. In contrast, Figure 5b depicts 
the westward migration of the Helmand 
Block via transform faults. Key tectonic 
features, including the Central-East Iranian 
Microcontinent (CEIM), the Dorouneh 
Fault System, and the Herat Fault, are 
clearly labeled to provide additional 
context. These competing interpretations 
underscore the complexity of the tectonic 
processes that shaped the Sistan Suture 
Zone. Together, they offer valuable insights 
into the evolution of this tectonic system 
and its broader implications for regional 
geodynamics.

 
Figure 5. Conceptual illustrations depicting two contrasting hypotheses for the northern termination 

of the Sistan Suture Zone: (a) the oroclinal buckling model and (b) westward migration facilitated by 

transform faults5. b-Value Analysis and Stress Tensor Inversion in the Sistan Suture Zone (modified 

from Rojhani et al. (2020))
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6. b-Value Analysis and Stress Tensor 
Inversion in the Makran Zone 
Sabahi et al. (2024) conducted a 
comprehensive investigation into the spatial 
and temporal variations of b-values, fractal 
dimensions, and stress tensor inversions 
within the Sistan Suture Zone, offering 
significant insights into its seismicity and 
tectonic evolution. Their findings reveal 
notable spatial contrasts in b-values, with 
the central segment displaying higher values 
than the northern and southern parts. This 
spatial distribution, as depicted in Figure 6 
(a), highlights the heterogeneous seismic 
behavior across the zone and provides 
valuable context for understanding the 
region’s tectonic activity. Analyzing the 
orientation of maximum horizontal stress 
(SHmax) is critical for studying stress 
sources, regional tectonics, and lithospheric 
deformation. The stress tensor inversion 
results presented in this study illustrate 
the faulting styles within the Sistan zone. 
The SHmax orientations are represented 
by striking bars that indicate the slip 
direction (Figure 6 (b)) and are color-coded 
to correspond to fault types: NF (normal), 
NS (normal-transcurrent oblique), SS 
(strike-slip), TS (reverse-transcurrent 
oblique), and TF (reverse fault). As shown 
in Figure 6 (b), the Sistan Suture Zone is 
predominantly characterized by strike-slip 
and reverse faulting, depicted by green and 
blue-colored striking bars, respectively. 
The NE-SW orientation of maximum 
horizontal stress reflects the tectonic forces 
shaping the region. Recent deformation 
within the Sistan Suture Zone is primarily 
associated with N-S to NNW-SSE right-

lateral strike-slip faults, alongside NW-SE 
reverse faults and E-W left-lateral strike-
slip faults. This deformation is closely 
linked to the indentation of the Arabian 
shield into Iran. Notably, the transition 
from right-lateral strike-slip faults to thrust 
faults marks a significant shift from non-
rotational to rotational deformation within 
the Sistan Suture Zone. Walker and Khatib 
(2006) highlighted this transformation, 
emphasizing its influence on the fault 
dynamics and structural evolution of the 
region.

7. Discussion and Conclusion
This schematic provides an integrated 
analysis of stress distribution and tectonic 
processes in the Sistan Suture Zone (SSZ) 
and adjacent regions, offering significant 
insights into the geodynamic behavior of 
eastern Iran. The SSZ is defined by N-S 
trending right-lateral faults, which lack 
rotational deformation and serve as a critical 
tectonic boundary. This zone facilitates 
relative motion between the Central-East 
Iranian Microcontinent (CEIM) and the 
Helmand Block, underscoring its importance 
in accommodating regional tectonic forces. 
In contrast, the Dorouneh Fault System 
(DFS) to the north demonstrates left-
lateral motion with clockwise rotation, 
highlighting the tectonic complexity within 
the CEIM. The Qasr-e Qand Fault serves 
as a pivotal boundary in the southern 
SSZ, marking the transition to the Makran 
Subduction Zone. This fault separates the 
elevated, faulted, and folded terrains in the 
north from compressional structures such 
as folds in the south, while aligning with a 
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significant increase in the dip angle of the 
subducting lithosphere. This steepening 
underscores its contribution to the broader 
dynamics of the Makran Subduction Zone, 
where compressional forces dominate, 
forming an extensive accretionary wedge, 
as seen in features like the Jaz Murian 
Depression. The centrally located Lut Block 
undergoes a counterclockwise rotation 
under regional stress, absorbing strain and 
influencing the dynamics of adjacent fault 
systems. Similarly, the Nauzad and Giv 
thrusts exhibit anticlockwise rotations, 
indicative of localized compressional forces 
and the distributed nature of deformation in 
the region. This comprehensive synthesis 
of stress dynamics and fault interactions 

provides valuable insights into the evolution 
of the SSZ and its role in the geodynamic 
framework of eastern Iran. The findings 
highlight the critical role of the Qasr-e 
Qand Fault in linking surface deformation 
to deeper subduction mechanisms, 
while emphasizing the intricate tectonic 
interactions shaping the SSZ. These insights 
contribute to a better understanding of the 
regional stress regime, fault kinematics, 
and deformation patterns, with broader 
implications for seismic hazard assessment 
and the tectonic evolution of the Makran 
Subduction Zone.

 

 Figure 6. (a) Spatial variation in the b-value for the Sistan zone. the star symbol indicates the 7.3 Ms 

earthquake in Zirkuh in 1997. (b) Stress tensor inversion results for Sistan The yellow stars in panels (a) 

and (b) indicate the 1997 Zirkuh earthquake with magnitude of 7.3 Ms. The colours correspond to the 

fault types: NF, normal; NS, normal-transcurrent oblique; SS, transcurrent (strike-slip); TF, inverse; 

TS, Transpressional (modified from Sabahi et al. (2024)).
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